

Stage – Realisatiedocument 1

2024 - 2025

Automation of Slide
Deck Generation
and Banking
Control Assessment
Realization document

Fabrice Elono Piseth

Student Bachelor Applied Computer Science

Stage – Realisatiedocument 2

Table of Contents

1. INTRODUCTION TO KPMG BELGIUM __ 3

1.1. Presence and offices ___ 3

1.2. Core Values __ 4

1.3. Clients and Industries ___ 5

1.4. KPMG Lighthouse Belgium ___ 5

2. INTERNSHIP ASSIGNMENT ___ 7

2.1. Slide Deck Generator ___ 7

2.2. Banking Control Assessment ___ 7

3. ANALYSIS ___ 8

3.1. Tools Used – Overview and Purpose ___ 8

3.2. Vector Store Comparison: FAISS vs Alternatives _______________________________________ 10

3.3. Why FAISS Was Selected __ 10

3.4. Langflow vs Streamlit + Langchain __ 11

4. PROJECT TIMELINE __ 12

5. PROJECT 1 : SLIDE DECK GENERATOR ___ 13

5.1. Use Case and Motivation ___ 13

5.2. Tools and Technologies Used __ 14

5.3. Architecture and Design __ 15

5.4. Implementation Highlights __ 20

5.5. Langflow–Streamlit Integration ___ 22

5.6. Results and Outcomes ___ 23

6. PROJECT 2 :BANKING CONTROL ASSESSMENT AUTOMATION ___________________________ 24

6.1. Use Case & Motivation ___ 24

6.2. Context and Business Value ___ 25

6.3. Tools & Technologies __ 26

6.4. Architecture & Implementation ___ 27

6.5. Why Cosine Similarity? ___ 33

6.6. Streamlit Integration & Final Outcome (Duplicate Control) ________________________________ 34

7. CONCLUSION ___ 38

8. REFERENCE LIST ___ 39

9. BIBLIOGRAPHY ___ 39

10. ATTACHEMENTS ___ 40

Stage – Realisatiedocument 3

1. Introduction to KPMG Belgium

KPMG Belgium is a member firm of the global KPMG network, which provides audit, tax,

legal, and advisory services in 143 countries. With more than 1,900 professionals across

Belgium, the firm combines deep local expertise with global insights to help clients navigate

their most complex challenges. KPMG Belgium is known for delivering high-quality,

multidisciplinary services across sectors including finance, public sector, technology, life

sciences, energy, and more.

1.1. Presence and offices

The firm operates in over eight locations in Belgium, strategically spread to remain close to

its clients:

Brussels (Head Office) , Antwerp , Ghent , Hasselt , Liège , Kortrijk , Doornik ,Louvain-La-

Neuve , Mont-Saint-Guibert . This geographic distribution ensures accessibility and localized

support across Flanders, Wallonia, and Brussels.

Figure 1 : Map indicating the different offices of KPMG Belgium

Stage – Realisatiedocument 4

1.2. Core Values

KPMG Belgium operates under a strong ethical framework guided by five core values:

• Integrity – Doing what is right, always.

• Excellence – Continuously learning and improving.

• Courage – Acting with confidence and challenging constructively.

• Together – Working collaboratively across boundaries.

• For Better – Striving to make a positive impact on clients, people, and society.

These values are embedded in the firm's day-to-day operations and its long-term strategic

goals.

Figure 2 : Core Values at KPMG Belgium

Stage – Realisatiedocument 5

1.3. Clients and Industries

KPMG Belgium supports a wide portfolio of clients across both private and public sectors.

These include:

• Financial Services (banking, insurance)

• Energy & Infrastructure

• Consumer and Retail

• Life Sciences

• Government and Public Sector

• Technology, Media, and Telecom (TMT)

• Family-Owned Businesses

• Real Estate and Automotive

This sector-driven structure allows KPMG teams to offer highly specialized, context-aware

advice tailored to the challenges of each industry.

1.4. KPMG Lighthouse Belgium

KPMG Lighthouse is KPMG’s center of excellence for data, AI, and emerging technologies.

In Belgium, it brings together experts across five specialized domains to help clients drive

digital transformation and unlock value from their data.

Core Departments and Their Focus

• Data Strategy & Management

Focuses on building trusted, governed data foundations and helping organizations

treat data as a strategic asset.

• BI & Analytics

Delivers dashboards, KPIs, and data visualizations to support smarter business

decisions.

• Advanced Analytics & Machine Learning

Applies machine learning and AI techniques for predictive insights, fraud detection,

and optimization.

• Intelligent Automation & NewTech

Implements RPA, cognitive automation, and hyper automation to streamline

processes and improve efficiency.

• Digital Solution Architecture

Designs scalable, cloud-based, and API-integrated technical architectures to support

digital innovation.

Stage – Realisatiedocument 6

Together, these teams enable end-to-end data solutions from strategy to implementation

ensuring KPMG’s clients are prepared for the future of business.

My internship was situated in the Intelligent Automation & NewTech team, where I

contributed to two projects aimed at automating manual processes and enhancing decision-

making through AI and large language models: focusing on two impactful automation tools:

the Slide Deck Generator and the Banking Control Assessment system.

Figure 3 : The Different departments at KPMG Lighthouse

Stage – Realisatiedocument 7

2. Internship Assignment

This section introduces the two intelligent automation projects developed during my

internship at KPMG Lighthouse, the center of excellence for data, AI, and emerging

technologies within KPMG Belgium. These initiatives aimed to solve real-world business

challenges through scalable and maintainable AI-powered tools.

2.1. Slide Deck Generator

An AI-based tool designed to automate the creation of standardized, on-brand slide

presentations using a Retrieval-Augmented Generation (RAG) pipeline. The solution

streamlines content extraction and slide formatting, significantly reducing manual effort while

ensuring consistency and quality.

2.2. Banking Control Assessment

A cognitive automation solution that leverages Large Language Models (LLMs) to analyze

internal banking controls, detect duplicates, and assess quality and risk factors. The tool

supports audit and compliance teams by improving the efficiency and accuracy of control

evaluations.

Stage – Realisatiedocument 8

3. Analysis

This chapter provides an overview of the tools and technologies used for the two major

components of my internship project: the Slide Deck Generator and the Banking Control

Assessment tool. Although both tools addressed distinct business challenges, they shared

a common architectural core centered around Large Language Models (LLMs), vector

databases, and orchestration frameworks.

The realization of these tools began with Streamlit to rapidly prototype the user interfaces

and core functionalities. As complexity increased particularly in both projects the need for a

modular, visual, and collaborative framework led to the adoption of Langflow. Throughout

both phases, technology decisions were based on trade-offs between performance, flexibility,

ease of use, and future maintainability.

3.1. Tools Used – Overview and Purpose

Below is a combined and elaborated list of the tools and libraries used across both the Slide

Deck Generator and the Banking Control Assessment projects. Each tool was selected

based on its compatibility with the tech stack, community support, and the specific

requirements of the use cases.

Streamlit

Used to rapidly prototype and deploy interactive user interfaces. It allowed me to quickly

visualize the functionality of both tools and gather feedback from my mentors and managers

early in development.

Langchain

Served as the backbone for building complex chains of operations involving LLMs. It

provided modular abstractions to combine tools, prompts, memory, and agents in a flexible

way.

Langchain-OpenAI

This package enabled seamless integration between Langchain and OpenAI’s models (like

GPT-3.5 and GPT-4), which were used for tasks such as summarization, classification, and

dynamic reasoning.

LangGraph

A Langchain extension that allowed for graph-based agent control flows. It was particularly

useful for structuring non-linear workflows, such as decision trees or conditional prompts.

Langflow

A visual interface built on top of Langchain, used in the later stages of development

especially for the banking control tool. It enabled easier visualization, debugging, and

Stage – Realisatiedocument 9

modification of LLM pipelines through a node-based interface, which also made collaboration

with non-developers easier.

FAISS (Facebook AI Similarity Search)

A high-performance vector store used to index and search document embeddings based on

semantic similarity. It was crucial for implementing the retrieval step in our RAG (Retrieval-

Augmented Generation) pipelines.

DuckDuckGo-Search

This tool was used to query external information from the web, which enriched the generated

slides with fresh, relevant content. It enhanced the value of the Slide Deck Generator beyond

static input sources.

PyPDF / PyMuPDF

Libraries used for parsing and extracting text from PDFs. This functionality was key to

ingesting client documents and feeding their content into the generation pipeline.

Pydantic

A data validation and settings management library that ensured all input/output structures

especially in Langchain tools were well-defined and type-safe. This helped avoid runtime

issues and improved code reliability.

Python-dotenv

Used to securely manage API keys and environment variables, keeping sensitive credentials

out of the main source code and enabling easier deployment across different environments.

Pandas

A powerful library for working with tabular data. It was especially helpful during the Banking

Control Assessment phase, where financial control records and CSV-based inputs were

loaded, transformed, and analyzed.

Stage – Realisatiedocument 10

3.2. Vector Store Comparison: FAISS vs Alternatives

In the Slide Deck Generator project, retrieving semantically relevant content was essential.

To support this, a vector store was required to store embeddings and perform fast similarity

searches efficiently. After evaluating several options FAISS, Chroma, Pinecone, and

Weaviate, I selected FAISS based on hands-on testing, research into official documentation,

and community benchmarks. (FAISS, s.d.)

The tools were compared using key criteria: speed, ease of use, community support, and

integration with Langchain.

Tool Speed Ease of use Community Integration

FAISS 4 3 4 4

Chroma 3 4 3 4

Pinecone 4 4 4 3

Weaviate 3 3 3 3

Table 1 - Weighted Decision Matrix for Vector Store Selection

3.3. Why FAISS Was Selected

FAISS was ultimately selected for the Slide Deck Generator due to its high performance,

solid integration with Langchain, and most importantly its ability to run fully offline. Since the

tool was developed and tested locally without relying on cloud infrastructure, FAISS provided

the best balance of speed, simplicity, and privacy. Other tools like Pinecone and Weaviate

were ruled out due to their reliance on external hosting and less favorable offline support.

(TiDB, 2024)

Stage – Realisatiedocument 11

3.4. Langflow vs Streamlit + Langchain

As the logic for both projects evolved, particularly for the Banking Control Assessment, it

became clear that managing Langchain chains purely in code through Streamlit introduced

limitations. While Streamlit enabled fast prototyping, its linear structure and lack of

visualization made it harder to debug and scale complex workflows involving multiple tools,

memory objects, and branching logic.

To address these challenges, Langflow was adopted in the later development stages.

Langflow is a visual orchestration tool built on top of Langchain that allows users to design

and connect components (tools, prompts, chains, etc.) in a node-based editor. This shift

enabled better collaboration, improved clarity in chain structure, and faster iterations

especially when gathering feedback from non-technical stakeholders.

The table below provides a comparison of the two approaches based on key criteria:

Criteria
Streamlit + Langchain
(code-based)

Langflow (visual-based)

Development Speed
Medium (fast to start, slower
later)

Fast (once setup is done)

Chain Visualization None Built-in

Collaboration Developer only Accessible to non-devs

Flexibility / Custom Logic High (full code control) Moderate (limited GUI nodes)

Reusability of Components High Moderate

Debugging Experience Manual Visual & interactive

Table 2 - Weighted Comparison of Workflow Tools

The combination of Streamlit and Langchain was ideal for initial experimentation and quick

MVP creation. However, as the complexity of the agent workflows increased especially for

dynamic banking control validation the move to Langflow significantly improved

maintainability, reduced errors, and made the logic transparent to a broader team. This

hybrid approach allowed for both flexibility and scalability during the project lifecycle.

Stage – Realisatiedocument 12

4. Project Timeline

Figure 4 - Internship Project Timeline (2024–2025)

To ensure a structured and focused delivery, the internship was organized around a

progressive monthly timeline. Each phase built upon the last from early onboarding and

research, to development, testing, and final documentation. This roadmap helped align

technical work with stakeholder expectations and ensured both projects progressed inparallel

where possible.

Stage – Realisatiedocument 13

5. Project 1 : Slide Deck Generator

The Slide Deck Generator is an internal AI tool built at KPMG Lighthouse by the Intelligent

Automation and NewTech Team to automate the creation of standardized pitch

presentations. It was designed to support consultants by significantly reducing the manual

effort typically spent drafting, formatting, and structuring slides. Initially implemented using

LangChain and FAISS, the solution was later migrated to a Langflow-based architecture for

greater modularity and maintainability. It enables users to upload internal reports, retrieve key

insights, and export a fully formatted .pptx file all within minutes.

5.1. Use Case and Motivation

Creating branded pitch decks can take up to 3 hours per project due to repetitive formatting

and manual information extraction. While several AI-based tools like Gamma or Slidesgo

exist, they often operate as external SaaS platforms and are not suitable for handling

confidential client data.

The Slide Deck Generator was developed as an internal solution tailored to KPMG’s

standards and privacy requirements. It leverages AI to extract relevant insights from client

documents and insert them into a predefined slide template. The goal is to save time, ensure

visual and brand consistency, and support scalability across multiple consulting use cases all

while ensuring that sensitive data remains securely managed within the organization’s

infrastructure.

Figure 5 : Streamlit UI with upload & generate interface

Stage – Realisatiedocument 14

5.2. Tools and Technologies Used

A detailed explanation of the tool stack used throughout the internship is available in Section

3.1. This section offers a concise summary specifically for the Slide Deck Generator,

accompanied by Figure 6, which visually maps the core technologies.

The project began using LangChain to develop the Retrieval-Augmented Generation (RAG)

pipeline. While this offered modularity and control, it was later replaced by Langflow, which

provided a visual interface that improved maintainability, debugging, and collaboration,

especially during iterations with mentors. To handle the language model operations and

embedding generation, Azure OpenAI was used across all stages.

For the vector database, FAISS was initially chosen due to its offline capabilities and strong

compatibility with LangChain. However, I later transitioned to PGVector, as it provided better

integration with PostgreSQL, which was already used internally at the company. PGVector

also worked more smoothly within Langflow’s multi-flow environment, making it the more

practical long-term choice.

User interaction was managed via Streamlit, which allowed rapid prototyping of the UI and

enabled document upload, client input, and result previewing. Once the AI-generated content

was ready, Azure Functions handled the automation of PowerPoint slide generation by

inserting JSON content into a predefined template. Finally, PyMuPDF was used at the start of

the pipeline to extract text from uploaded PDFs, feeding clean content into the embedding

step.

Figure 6 : Technology Stack Image

Stage – Realisatiedocument 15

5.3. Architecture and Design

To simplify the development and allow easier visualization of the pipeline, we transitioned

from a purely code-based setup to Langflow. Langflow allowed us to define and execute

flows using a visual interface, improving maintainability, onboarding, and clarity.

The system is divided into two main flows:

A) PITCH DECK DATA LOADER :

Figure 7 : Data Loader Langflow .Higher-resolution version of this figure is available in the Appendix (see Figure
A1).

Stage – Realisatiedocument 16

This flow is triggered when a user uploads one or more documents. The uploaded files are

zipped and passed to the File node. The pipeline then proceeds as follows:

• File Node : Accepts the zipped user-uploaded PDF documents.

• Split Text: Splits the full text into overlapping chunks (e.g., 1500 characters with 100-

character overlap) to ensure semantic coherence.

Stage – Realisatiedocument 17

• Azure OpenAI Embedder: Sends chunks to the Azure OpenAI embedding model

(e.g., text-embedding-ada-002) and generates vector representations.

• PGVector: Stores the resulting vectors in a PostgreSQL-backed vector database,

enabling semantic search in later steps.

This preprocessing step ensures that all input content is accessible and searchable via

vector similarity, enabling better RAG performance downstream.

Stage – Realisatiedocument 18

B) PITCH DECK GENERATOR :

The Pitch Deck Generator flow automates the creation of a personalized PowerPoint

presentation based on uploaded documents and user input. After retrieving relevant

content from a vector store, the system uses an AI agent to fill predefined

placeholders (e.g., {title}, {fa_sales_23}) with context-specific data. The result is a

fully structured JSON, which is then applied to a PowerPoint template, producing a

ready-to-download deck. This flow ensures a smooth transition from raw input to

professional output using Retrieval-Augmented Generation and template automation.

Figure 8 : Langflow: Slide Generator Flow Overview

• Chat Input: Accepts the user’s input, typically the client name or context for the pitch

deck. This value is passed into the agent as a dynamic variable used in both the

query and the placeholder filling process.

• Current Time Tool: Fetches the current date and time, which can be used in the

generated content (e.g., to populate {date} or contextualize insights as of today).

• PGVector Tool : Acts as the retriever. Given a query or placeholder name, it fetches

the most relevant document chunks previously embedded and stored. These chunks

are passed as context to the agent.

• Agent

The heart of the flow. It uses predefined Agent Instructions containing the target

structure (placeholders like {title}, {fa_sales_23}, etc.). The agent performs RAG by

combining the PGVector results and Chat Input, and generates a structured JSON

output with all required values filled in.

• JSON Output

Captures the raw output from the agent, usually in JSON format with all the required

keys filled.

Stage – Realisatiedocument 19

• JSON Cleaner

Validates and cleans the JSON to ensure correct formatting, escaping of characters,

and consistent structure essential for downstream automation.

• Edit Template (Custom Component)

A specialized node that takes the cleaned JSON and injects each key-value pair into

the pre-configured PowerPoint template by replacing placeholders with values from

the agent. For example, {title} in the slide becomes “Q2 Business Overview” if that's

the agent's response.

• Text Output

Confirms success and makes the download link available for the newly generated

.pptx presentation.

Stage – Realisatiedocument 20

5.4. Implementation Highlights

The Slide Deck Generator combines AI reasoning, dynamic configuration, and template-

based formatting to deliver a smooth, automated presentation generation experience. The

following core mechanisms illustrate how the system transforms uploaded documents and

user prompts into structured, branded PowerPoint slides:

• Template-Based Generation

The system uses a predefined PowerPoint template where each content block

corresponds to a placeholder key (e.g., {title}, {fa_ratios}, {rm_key_risks}). These keys

are filled automatically with AI-generated content during the flow execution.

• RAG Logic (Retrieval-Augmented Generation)

Langflow agents query a vector store (PGVector) to retrieve the most relevant content

from the previously embedded documents. This allows the system to generate accurate,

contextual slide content tailored to each client.

• Advanced Prompting

Prompts are carefully designed to enforce consistent formatting and data coverage. If no

answer is found for a specific placeholder, the system gracefully defaults to "null" or an

empty string to preserve template structure.

• Configuration Editor

A dedicated interface tab allows users to customize the list of placeholders and their

associated instructions before starting the generation. This supports flexibility across

business use cases while preserving structure.

Stage – Realisatiedocument 21

Figure 9 - Example of Structured Agent Instructions and Expected Output Format . Due to the length and density
of this code snippet, a full-resolution version is included in Appendix A (see Figure A3) for easier readability.

Figure 10 - Configuration Editor Interface for Slide Generation

Stage – Realisatiedocument 22

5.5. Langflow–Streamlit Integration

To bridge user-friendly interactivity with backend AI automation, Langflow flows were

integrated into a custom Streamlit interface using API-based communication. This allowed

users to trigger Langflow pipelines through simple UI actions like file uploads or text inputs,

while keeping logic and processing centralized in Langflow.

The integration consists of two main steps:

1. Uploading and Embedding Files

• Users upload PDF documents via Streamlit.

• The files are zipped and sent to the Pitch Deck Data Loader flow in Langflow.

• A specific API endpoint (/upload/{flow_id}) handles this upload.

• The uploaded documents are parsed using PyMuPDF, embedded using Azure

OpenAI, and stored in PGVector for retrieval.

2. Generating the Presentation

• The user then enters a client name into the Streamlit interface.

• Streamlit triggers the Pitch Deck Generator flow by calling the /run/{flow_id}

endpoint with structured inputs, outputs, and optional tweaks.

• Agent Instructions and Chart Instructions are dynamically injected through the

tweaks parameter to tailor the system prompt for the Langflow agent.

• Once Langflow processes the request, the generated slide content (in JSON) is

returned to Streamlit.

• The JSON is passed to a custom Azure Function that populates a PowerPoint

template with the agent’s output.

This integration design offers a clear separation of responsibilities:

• Langflow handles AI logic, vector retrieval, and prompt orchestration.

• Streamlit focuses on user interaction, input management, and output presentation.

Stage – Realisatiedocument 23

5.6. Results and Outcomes

During internal testing, the generator successfully reduced the time required to produce a

10–15 slide pitch deck from what typically takes over 2 hours (Dbouk, 2019) to approximately

1-4min, depending on document length and complexity. While no formal user testing was

conducted, this estimate is based on repeated manual benchmarking throughout

development.

Figure 11 - Image showing the time it takes for slide generation

The generated slides consistently adhered to KPMG’s brand guidelines and structure,

improving clarity and reducing formatting errors. The modular design also opens the door for

future enhancements, such as multilingual generation, dynamic slide review, and domain-

specific templates.

Demo Link

https://youtu.be/AJ6ReoFXcAs?si=jFDeug0F8_l-WJ-e
https://youtu.be/AJ6ReoFXcAs?si=jFDeug0F8_l-WJ-e

Stage – Realisatiedocument 24

6. Project 2 :Banking Control Assessment

Automation

Operating with significant financial assets and sensitive data, financial institutions face

substantial risks including fraud, regulatory breaches, and reporting errors. To mitigate these

threats and ensure operational integrity, they rely on internal controls: systems of policies,

procedures, and structured actions. These controls safeguard critical assets, enforce

compliance, ensure data accuracy, and form the bedrock of a bank's stability and

trustworthiness.

However, assessing whether these controls are properly designed and implemented is often

done manually, making the process time-consuming, error-prone, and difficult to scale. To

address this, KPMG Belgium developed a prototype that automates control assessment

using large language models (LLMs) and semantic similarity techniques.

To tackle this challenge, KPMG Belgium developed a prototype that automates the

evaluation of banking controls using AI technologies such as large language models (LLMs),

vector similarity search, and structured prompt design. This project was carried out within the

Intelligent Automation team and aimed to modernize the control assessment process with

minimal user intervention while ensuring quality and traceability.

6.1. Use Case & Motivation

Organizations today face increasing regulatory complexity and the need for continuous

assurance over their internal control environments. As both business operations and

compliance obligations scale, the effort required to evaluate the design and effectiveness of

internal controls grows proportionally often manually.

KPMG’s Banking Control Assessment automation solution addresses this challenge by

providing a tool that uses Large Language Models (LLMs) and semantic similarity

techniques to assist in:

• Identifying duplicate or redundant controls

• Evaluating control quality using a scoring model

• Suggesting automation potential for specific controls

• Improving audit readiness and data consistency

The goal is to reduce manual effort, improve the consistency of assessments, and enhance

insights into where automation and improvement opportunities lie.

Stage – Realisatiedocument 25

6.2. Context and Business Value

This tool was developed as part of a wider initiative by KPMG’s Intelligent Automation team

to accelerate control assessments for internal audit, compliance, and GRC transformation

projects.

Compared to traditional assessments that rely heavily on spreadsheets and interviews, this

solution introduces:

• Scalability: Handles large volumes of controls across business lines

• Data-driven automation: Enables predictive scoring and semantic analysis

• Audit quality: Enforces structured frameworks like 5W1H and risk alignment

• Time savings: Reduces the time required for duplication checks and control reviews

from hours to minutes

Stage – Realisatiedocument 26

6.3. Tools & Technologies

The Banking Control Assessment solution combined previously introduced components

with a few new technologies tailored to high-volume spreadsheet handling and backend

logic. The system architecture was built using Langflow for visual orchestration, Streamlit

for the frontend, and custom Python scripts for control logic and API integration. As

discussed earlier (see Section 3.1), tools like OpenAI embeddings, PGVector, and

Langflow handled the core AI workflow: embedding control definitions, querying similar

entries, and generating structured outputs.

What was new in this project was the introduction of Polars and OpenPyXL, which

replaced traditional Pandas-based processing. These tools significantly improved

performance, especially when handling large Excel files containing complex control

matrices. Polars enabled fast, memory-efficient transformations of control data, while

OpenPyXL was used specifically to read Excel sheets with structured columns such as

“Reference,” “Risk,” “Definition,” and “Process.” Together, they ensured smooth

preprocessing of Risk Control Matrices (RCMs) prior to embedding.

Additionally, a set of custom Python utilities (banking_funcs.py, worker.py) handled API

communication with Langflow, calculated cosine similarities between embedded vectors,

and structured the JSON output for display. These utilities formed the functional

backbone of the banking control logic, automating duplicate detection, quality scoring,

and formatted result generation.

Figure 12 - Techonlogies used for Project 2 (Banking Control Assessment Automation)

Stage – Realisatiedocument 27

6.4. Architecture & Implementation

The Banking Control Assessment system is designed to take an Excel file containing control

definitions and return structured evaluations including quality scoring, duplication checks,

and automation potential through an AI-enhanced workflow. The solution integrates

Langflow for flow orchestration, Streamlit for the user interface, and several backend

utilities for parsing, embedding, and similarity analysis.

For this, project , I worked on two main flows: the Duplicate control and the Quality

Control

A) DUPLIACATE CONTROL :

The Duplicate Control flow is designed to automatically detect semantically similar or

redundant internal controls based on their descriptions. Manual duplication analysis is

labor-intensive and often inconsistent, especially in large control libraries. This flow

streamlines the process by embedding the control definitions, calculating similarity

scores, and using an agent to analyze and explain the differences between potential

duplicates.

Figure 13 - Duplicate Control Fow

Stage – Realisatiedocument 28

Figure 14 - Duplicate Control flow

WHAT THE FLOW DOES:

The duplicate control flow begins by accepting an Excel file containing internal control

descriptions. These descriptions are first embedded using OpenAI embeddings, transforming

them into numerical vectors that represent their semantic meaning. Once embedded, the

system computes pairwise cosine similarity scores between the controls to identify potential

duplicates. Pairs that exceed a predefined similarity threshold are retained for further

analysis. Each of these high-similarity pairs is then passed to a Langflow agent, which

compares the two controls and generates a qualitative explanation highlighting any

redundancies or meaningful differences.

Figure 15 - Resulting DataFrame

Stage – Realisatiedocument 29

KEY NODES EXPLAINED

The flow begins with the DataFrame Loader, which imports the Excel file containing

control data into a format suitable for processing. The Azure OpenAI Embedder then

converts the English control definitions into vector embeddings using the text-embedding-

ada-002 model. These embeddings are appended to the dataset by the Embeddings

Processor, preparing them for semantic comparison.

Next, the Basic Similarity Calculator computes cosine similarity scores between all

control definitions, and the Similarity Threshold Filter retains only those pairs exceeding a

specified threshold (e.g., 0.9) to minimize false positives. These filtered results are

passed through a DataFrame to Data converter, which restructures the entries into a list

format compatible with Langflow’s agent interface.

Each pair is then transformed into a structured prompt by the Data to Message

component. The Agent (Duplicate Analysis) receives these messages and generates a

qualitative explanation, indicating whether the controls are redundant and, if so, how they

differ. For debugging or testing purposes, the Text Output node can optionally display raw

agent responses directly within Langflow.

Once processed, the Add Analysis Column step appends the agent’s explanation to the

dataset. Finally, the Final Data Export & Output node converts the enriched dataset into a

polished format that can be shown in Streamlit or exported for reporting.

Stage – Realisatiedocument 30

B) QUALITY CONTROL :

The Quality Control flow aims to assess the completeness and clarity of control

descriptions based on the 5W1H evaluation framework: What, Why, How, When,

Where, and Who. This evaluation supports audit readiness and helps identify controls

that are poorly documented or unfit for automation.

This flow processes the uploaded Excel file, extracts the control text, and uses a

Langflow agent to generate structured answers to quality questions. The responses

are then scored and presented back to the user in a readable table.

 WHAT THE FLOW DOES

This flow begins by accepting an Excel file containing internal control definitions. It

extracts the control-level text and enriches it with OpenAI embeddings. The embedded

content, along with an optional knowledge base, is then sent to a Langflow agent. This

agent evaluates each control using a quality assessment framework based on the

5W1H method (What, How, When, Where, Who, Why, and Systems). Specifically, it

answers questions such as: what the requirements are for a given control, how they

should be evaluated, when and how frequently they should be checked, and which

systems are involved. It also determines why the control matters, who is responsible

for it, and where the control should be verified. Finally, the agent’s responses are

cleaned, converted into a DataFrame, and scored based on completion to support

consistent analysis and prioritization.

Figure 16 - Quality Control flow

Stage – Realisatiedocument 31

Figure 17 - Quality control flow

KEY NODES EXPLAINED

The flow begins with the File + Split Text component, which accepts the uploaded control

document and breaks it into manageable chunks to ensure smooth processing during

embedding. These chunks are then passed to the Azure OpenAI Embedder, which uses the

text-embedding-3-small model to generate semantic vector representations of each control

description. The resulting embeddings are stored in PGVector, enabling retrieval-augmented

generation if needed by the downstream Langflow agent.

An optional Knowledge Base can also be connected, supplying supplemental context such

as system definitions or glossary terms that help the agent deliver more accurate responses.

To streamline input, the Extract Unique Controls node filters and deduplicates control rows,

ensuring only distinct records are processed. These cleaned controls are converted into a list

format by the DataFrame to Data node.

The Data to Message component takes each control block and structures it into a message

template (e.g., “Reference: {{Reference}}, Definition: {{English definition}}”) so it can be

interpreted by the agent. At the core of the flow is the Agent (Quality Assessor), which is

configured with 5W1H-based instructions. It processes each control individually, generating

structured responses to seven predefined quality dimensions.

Stage – Realisatiedocument 32

Once the agent’s output is received, it passes through a JSON Cleaner to remove escape

characters and normalize formatting. The cleaned output is then converted back into a

structured table using JSON to Data and Data to DataFrame components. Lastly, a custom

Score Controls node evaluates the completeness of each agent response, assigning a score

based on how many of the seven questions were fully answered.

Figure 18 - Output of the quality control with the different questions answered and scored

Stage – Realisatiedocument 33

6.5. Why Cosine Similarity?

In the Duplicate Control detection flow, cosine similarity was chosen as the primary method

for comparing control definitions because it effectively captures semantic similarity between

high-dimensional vectors generated from text embeddings.

When control descriptions are embedded using OpenAI's text-embedding-ada-002, each one

is represented as a numerical vector in a high-dimensional space. Cosine similarity

measures the angle between these vectors rather than their raw distance, which makes it

ideal for determining how similar two controls are in meaning, regardless of their length or

word count.

This approach offers several key advantages:

• Scale-invariance: Two controls with similar meaning but different word counts or

phrasing still produce similar vectors.

• Speed & Efficiency: Cosine similarity is computationally lightweight and integrates

seamlessly with PGVector and Langflow.

• Fine-tuning: A threshold (e.g., ≥0.90) can be applied to filter pairs with only strong

semantic matches, reducing false positives.

By combining this similarity scoring with LLM-based reasoning, the system delivers both

quantitative (similarity score) and qualitative (agent explanation) evidence for potential

duplicates offering a comprehensive and explainable approach to control review.

Stage – Realisatiedocument 34

6.6. Streamlit Integration & Final Outcome (Duplicate Control)

To enhance usability and allow business users to interact with the AI-powered control

evaluation, the Duplicate Control flow was integrated into a custom Streamlit application.

This integration allowed users to:

• RCM File Upload via Streamlit: Users can upload an RCM (Risk Control Matrix)

Excel file directly within the Streamlit UI. This removes the need for backend

interaction or manual file handling, allowing quick and secure ingestion of control

data.

Figure 19 - Upload Tab of the Banking Control App

• Langflow Flow Execution via API: Once a file is uploaded, the user can trigger the

Langflow pipeline with a single button. This is achieved via backend API calls that

connect Streamlit to Langflow, initiating the duplicate detection flow and passing the

uploaded file as input.

Stage – Realisatiedocument 35

Figure 20 - Langflow Integration to Streamlit

Stage – Realisatiedocument 36

Stage – Realisatiedocument 37

• Real-Time Feedback on Duplicate Matches

After flow execution, the number of detected duplicate controls is displayed

immediately. This includes a summary count and optionally a preview of the matched

control blocks, allowing users to quickly assess the output.

Figure 21 - Duplicate Tab with results

• Agent-Based Explanation for Each Match

For every control pair identified as potentially duplicated, the LLM agent provides a

written explanation. This includes reasoning about whether the controls are redundant

or similar, what differs, and whether merging or removal should be considered.

• Result Export and Review

The Streamlit app also allows users to export the results as a structured table. This

enables further analysis, team review, or integration into broader audit documentation

workflows.

How the Integration Works

• The Streamlit app first accepts and previews the uploaded control file.

• When the user clicks “Run Duplicate Check”, the file is sent to the Langflow API,

which launches the Duplicate Control flow.

• The flow runs the embedding, similarity filtering, and LLM analysis as described

earlier.

• Once complete, the output (agent response and similarity results) is returned and

rendered as both:

o A readable control block in a text area

o A structured table showing matched control references and similarity

explanations

Demo Link

https://youtu.be/eXzQnVVs780?si=1-REBrWtoJ2P2a7e

Stage – Realisatiedocument 38

7. Conclusion

Reflecting on this internship, I gained far more than just technical experience. I learned what

it truly means to work in a large, structured organization like KPMG, one of the Big Four. It

was an opportunity to contribute meaningfully while navigating the challenges of an

enterprise-level environment.

Initially, I expected to work closely with a team, but the project turned out to be largely

standalone. While that was unexpected, it pushed me to develop autonomy, self-discipline,

and problem-solving skills. Over time, I came to appreciate the freedom to shape the project

and the clarity that came from owning each part of the process.

Throughout the internship, I had the chance to build fully working AI tools, apply real-world

prompt engineering, and deepen my understanding of LLM pipelines. Technologies like

Streamlit and LangChain were familiar and gave me a strong foundation. However, Langflow

was completely new. I had to self-learn, document extensively, and seek support from

colleagues when necessary, especially in areas like agent configuration and data

transformation.

Another takeaway was the mismatch between job descriptions and real-world scope. I was

initially asked to familiarize myself with RPA tools like UiPath, but in practice, the project

focused more on intelligent automation with LLMs. That pivot taught me to stay adaptable

and focus on what’s valuable, not just what’s expected.

Beyond technical growth, this internship expanded my professional network and allowed me

to meet inspiring people across departments. It reinforced the importance of being proactive,

curious, and open to the unexpected.

Ultimately, I walk away with practical AI experience, a sharper understanding of enterprise

workflows, and the confidence to build automation tools from scratch. For future interns, my

message would be simple: don’t expect a predefined roadmap, be ready to build your own.

Stage – Realisatiedocument 39

8. Reference list

• Meta AI. (2017). FAISS: A library for efficient similarity search. Retrieved from

• Zilliz. (2023). FAISS vs HNSWlib: Choosing the Right Tool for Vector Search.

Retrieved from https://zilliz.com/blog/faiss-vs-hnswlib-choosing-the-right-tool-for-

vector-searchLangChain. (2023).

• Documentation. Retrieved from https://docs.langchain.com

• Langflow. (2023). Langflow Visual Orchestrator. Retrieved from

https://docs.langflow.org

• Streamlit. (2023). Streamlit Docs. Retrieved from https://docs.streamlit.io

• OpenAI. (2023). Text Embedding Models. Retrieved from

https://platform.openai.com/docs/guides/embeddings

• PostgreSQL Global Development Group. (2023). PostgreSQL Documentation.

Retrieved from https://www.postgresql.org/docs/

• Python Software Foundation. (2023). OpenPyXL and Polars Libraries. Retrieved from

https://openpyxl.readthedocs.io and https://pola.rs

• Prompt Engineering. (2023, May 8). Langflow: Drag and Drop ChatGPT Workflow

Builder . YouTube. https://youtu.be/uA6sL65UNi4

• AI Anytime. (2023, July 2). LangChain vs Langflow . YouTube.

https://www.youtube.com/watch?v=1ic-V0TCscM

9. Bibliography

Dbouk, J. (2019). Quora. Opgehaald van Quora: https://www.quora.com/How-long-did-it-take-to-build-or-

compose-a-pitch-deck-for-your-startup
FAISS. (sd). Faiss Official Documentation. Opgehaald van https://faiss.ai/

TiDB, T. (2024, July 16). TiDB. Opgehaald van pingcap: https://www.pingcap.com/article/mastering-faiss-

vector-database-a-beginners-

handbook/#:~:text=Scalability%3A%20Designed%20to%20handle%20datasets,suitable%20for%20

real%2Dtime%20applications.

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://docs.langchain.com/
https://docs.langflow.org/
https://docs.streamlit.io/
https://platform.openai.com/docs/guides/embeddings
https://www.postgresql.org/docs/
https://openpyxl.readthedocs.io/
https://pola.rs/
https://youtu.be/uA6sL65UNi4
https://www.youtube.com/watch?v=1ic-V0TCscM

Stage – Realisatiedocument 40

10. Attachements

The following annexes provide additional context and technical detail that support the content

presented in the main report. They include full-resolution diagrams, selected Langflow nodes,

and code excerpts that were referenced but too dense to include inline. Each attachment has

been referred to at least once in the body of the document.

APPENDIX A – VISUAL REFERENCES

A.1 Pitch Deck Data Loader

Stage – Realisatiedocument 41

A.2 Pitch Deck Generator-fab-charts

Stage – Realisatiedocument 42

A.3 Prompt Template and Output Structure for Slide Deck Generator

def get_output_structure():

 if TEMPLATE == "template_bank_degroof v3":

 return {

 "values":{

 "title": "A convincing title for the pitch (max. 20 chars)",

 "date": "Insert the current date (from the current date tool) in

the format 'DD MMM YYYY'.",

 "es_introduction": "Maximum seven sentences that summarize all key

findings, an executive summary on the company. This should provide a high-

level overview of the company's current status, key strengths, and any

critical issues identified (around 2000 chars",

 "es_challenges": ["List of shortly described items, min 2, maximum

5, talking about the key challenges that the company faces and why it would be

challenging to acquire it. Be thorough and provide specific insights based on

the information provided."],

 "es_opportunities": ["List of shortly described items, min 2,

maximum 5, talking about the key opportunities why it would be good to acquire

it. Be thorough and give non-obvious insights based on the information

provided. The opportunities should be specific to the company or sector of the

company."],

 "co_description": "Paragraph description of the company and its

main activities. This should include the company's core business operations,

products or services offered, and any unique aspects of its business model.(90

chars)",

 "co_background": "Five sentences about the history and background

of the company. This should cover the company's founding, major milestones,

and any significant changes or developments over time.",

 "co_performance": "Five sentences about the recent performance of

the company. This should include key financial metrics, recent achievements,

and any notable challenges faced by the company.",

 "ma_analysis_description": "Paragraph as an introduction for a

market analysis slide. This should provide an overview of the market,

including key trends, growth drivers, and any significant changes expected in

the near future. (around 80 chars).",

 "ma_trends_outlook": "List of shortly described items, min 2,

maximum 5, talking about industry trends and outlook. This should include

specific trends affecting the industry and the expected future outlook based

on current data.",

 "ma_landscape_benchmarking": "Introduction and conclusion on other

companies. Be thorough and provide specific insights based on the information

provided. (around 700 chars)",

Stage – Realisatiedocument 43

 "ma_economic_factors": "Introduction and conclusion on external

factors. Be thorough and provide specific insights based on the information

provided. (around 700 chars)",

 "ma_outlook_description": "Introduction to the chart that shows

the expected market evolution. Be thorough and provide specific insights based

on the information provided.(max 100 chars)",

 "fa_ratios": ["List of key financial ratios, including the years

and values used for calculating them. This should include ratios such as the

current ratio, debt-to-equity ratio, return on equity, and any other relevant

financial metrics."],

 "fa_forecasts": ["List of key forecast figures, including the

sources that mention the forecasts. This should include projected revenue,

profit, market growth, and any other significant financial or market

forecasts."],

 "fa_sales_22": "Sales figures in 2022, in millions of €. Just a

number with proper formatting. This should represent the total revenue

generated by the company in the year 2022.",

 "fa_net_sales_22": "Net sales figures in 2022, in millions of €.

Just a number with proper formatting. This should represent the total revenue

after deducting returns, allowances, and discounts in the year 2022.",

 "fa_profit_22": "Profit figures in 2022, in millions of €. Just a

number with proper formatting. This should represent the net profit earned by

the company in the year 2022.",

 "fa_sales_23": "Sales figures in 2023, in millions of €. Just a

number with proper formatting. This should represent the total revenue

generated by the company in the year 2023.",

 "fa_net_sales_23": "Net sales figures in 2023, in millions of €.

Just a number with proper formatting. This should represent the total revenue

after deducting returns, allowances, and discounts in the year 2023.",

 "fa_profit_23": "Profit figures in 2023, in millions of €. Just a

number with proper formatting. This should represent the net profit earned by

the company in the year 2023.",

 "po_products_services_goals": ["List of the specific financial

products and services being proposed and how each one addresses the client's

needs or supports their goals (around 500 chars each)"],

 "po_examples": ["List of examples of similar products used

successfully with other (around 500 chars each)"],

 "vp_differentiators": ["List of the bank's differentiators (e.g.,

deep industry expertis, global reach, customized solution) (around 500 chars

each)"],

 "vp_success_stories": ["List of success stories or case studies of

similar clients (plus emphasize the commitment to a long-term partnership)

(around 500 chars each)"],

 "fp_look_forward": ["List of forward-looking financial statements

(income statement, balance sheet, cash flow) (around 500 chars each)"],

 "fp_analysis": "Perform sensitivity analysis or scenario planning

(around 2000 chars)",

Stage – Realisatiedocument 44

 "fp_impact": "Illustrate the impact of the proposed solutions on

the client's inancial health (around 2000 chars)",

 "rm_key_risks": ["List of key risks (e.g., credit risk, market

risk, operational risk) (around 300 chars each)"],

 "rm_solutions": ["List of possible risk management solutions

(around 300 chars each)"],

 "rm_regulatory": ["List addressing regulatory compliance

considerations (around 300 chars each)"],

 "tr_step1": "Name step 1 (first) of the implementation plan (max.

30 chars)",

 "tr_explanation1": ["List of actions"],

 "tr_step2": "Name step 2 of the implementation plan (max. 30

chars)",

 "tr_explanation2": ["List of actions"],

 "tr_step3": "Name step 3 (final) of the implementation plan (max.

30 chars)",

 "tr_explanation3": ["List of actions"],

 "sources_explanation": ["Unique List of ALL the vector store

documents used in your research, only file names"]

 },

 "charts": [

 {

 "chartIdentifier": "ma_chart_outlook",

 "chartName": "Profits",

 "categories": ["2021", "2022", "2023"],

 "series": [

 {

 "name": "Profit",

 "values": ["Generate values for Profit here return

null or an empty string if you can't find the data"]

 },

 {

 "name": "Revenue",

 "values": ["Generate values for Revenue here

return null or an empty string if you can't find the data"]

 }

]

 },

 {

 "chartIdentifier": "chart_financials",

 "chartName": "Profits",

 "categories": ["2021", "2022", "2023"],

 "series": [

 {

 "name": "Profit",

 "values": ["Generate the values for Profit here

return null or an empty string if you can't find the data"]

Stage – Realisatiedocument 45

 },

 {

 "name": "Revenue",

 "values": ["Generate values for Revenue here

return null or an empty string if you can't find the data"]

 }

]

 }

],

 }

A.4 Langflow: Duplicate Control Detection Pipeline (Full Resolution)

Stage – Realisatiedocument 46

A.5 Langflow: Quality Assessment Flow (Full Resolution)

Stage – Realisatiedocument 47

